Wellposedness for the fourth order nonlinear Schrödinger equations
نویسندگان
چکیده
منابع مشابه
Some Local Wellposedness Results for Nonlinear Schrödinger Equations below L
In this paper we prove some local (in time) wellposedness results for non-linear Schrödinger equations ut − i∆u = N (u, u), u(0) = u0 with rough data, that is, the initial value u0 belongs to some Sobolev space of negative index. We obtain positive results for the following nonlinearities and data:
متن کاملWellposedness of Cauchy problem for the Fourth Order Nonlinear Schrödinger Equations in Multi-dimensional Spaces
We study the well-posedness of Cauchy problem for the fourth order nonlinear Schrödinger equations i∂t u=−ε u+ 2u+ P (( ∂ x u ) |α| 2, ( ∂ x ū ) |α| 2 ) , t ∈R, x ∈Rn, where ε ∈ {−1,0,1}, n 2 denotes the spatial dimension and P(·) is a polynomial excluding constant and linear terms. © 2006 Elsevier Inc. All rights reserved.
متن کاملGlobal wellposedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth order in the radial case
We consider the focusing energy-critical nonlinear Schrödinger equation of fourth order iut + ∆ u = |u| 8 d−4u. We prove that if a maximal-lifespan radial solution u : I × R → C obeys sup t∈I ‖∆u(t)‖2 < ‖∆W‖2, then it is global and scatters both forward and backward in time. Here W denotes the ground state, which is a stationary solution of the equation. In particular, if a solution has both en...
متن کاملA new optimal method of fourth-order convergence for solving nonlinear equations
In this paper, we present a fourth order method for computing simple roots of nonlinear equations by using suitable Taylor and weight function approximation. The method is based on Weerakoon-Fernando method [S. Weerakoon, G.I. Fernando, A variant of Newton's method with third-order convergence, Appl. Math. Lett. 17 (2000) 87-93]. The method is optimal, as it needs three evaluations per iterate,...
متن کاملTHIRD-ORDER AND FOURTH-ORDER ITERATIVE METHODS FREE FROM SECOND DERIVATIVE FOR FINDING MULTIPLE ROOTS OF NONLINEAR EQUATIONS
In this paper, we present two new families of third-order and fourth-order methods for finding multiple roots of nonlinear equations. Each of them requires one evaluation of the function and two of its first derivative per iteration. Several numerical examples are given to illustrate the performance of the presented methods.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2006
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2005.06.091