Wellposedness for the fourth order nonlinear Schrödinger equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Local Wellposedness Results for Nonlinear Schrödinger Equations below L

In this paper we prove some local (in time) wellposedness results for non-linear Schrödinger equations ut − i∆u = N (u, u), u(0) = u0 with rough data, that is, the initial value u0 belongs to some Sobolev space of negative index. We obtain positive results for the following nonlinearities and data:

متن کامل

Wellposedness of Cauchy problem for the Fourth Order Nonlinear Schrödinger Equations in Multi-dimensional Spaces

We study the well-posedness of Cauchy problem for the fourth order nonlinear Schrödinger equations i∂t u=−ε u+ 2u+ P (( ∂ x u ) |α| 2, ( ∂ x ū ) |α| 2 ) , t ∈R, x ∈Rn, where ε ∈ {−1,0,1}, n 2 denotes the spatial dimension and P(·) is a polynomial excluding constant and linear terms. © 2006 Elsevier Inc. All rights reserved.

متن کامل

Global wellposedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth order in the radial case

We consider the focusing energy-critical nonlinear Schrödinger equation of fourth order iut + ∆ u = |u| 8 d−4u. We prove that if a maximal-lifespan radial solution u : I × R → C obeys sup t∈I ‖∆u(t)‖2 < ‖∆W‖2, then it is global and scatters both forward and backward in time. Here W denotes the ground state, which is a stationary solution of the equation. In particular, if a solution has both en...

متن کامل

A new optimal method of fourth-order convergence for solving nonlinear equations

In this paper, we present a fourth order method for computing simple roots of nonlinear equations by using suitable Taylor and weight function approximation. The method is based on Weerakoon-Fernando method [S. Weerakoon, G.I. Fernando, A variant of Newton's method with third-order convergence, Appl. Math. Lett. 17 (2000) 87-93]. The method is optimal, as it needs three evaluations per iterate,...

متن کامل

THIRD-ORDER AND FOURTH-ORDER ITERATIVE METHODS FREE FROM SECOND DERIVATIVE FOR FINDING MULTIPLE ROOTS OF NONLINEAR EQUATIONS

In this paper, we present two new families of third-order and fourth-order methods for finding multiple roots of nonlinear equations. Each of them requires one evaluation of the function and two of its first derivative per iteration. Several numerical examples are given to illustrate the performance of the presented methods.    

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2006

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2005.06.091